PROBLEM 1

(1 point) Let F be the function below.

If you are having a hard time seeing the picture clearly, click on the picture. It will expand to a larger picture on its own page so that you can inspect it more clearly.

台大WEBWORK 微積分1:11~14組 【2.2: Pr

Evaluate each of the following expressions.

Note: Enter 'DNE' if the limit does not exist or is not defined.

 

 

台大WEBWORK 微積分1:11~14組 【2.2: Pr

 

PROBLEM 2

1 point) Use the given graph of the function f to find the following limits. If a limit does not exist, type "DNE".

 

台大WEBWORK 微積分1:11~14組 【2.2: Pr

 


1. limx2f(x)=lim�→2−�(�)= 

2. limx2+f(x)=lim�→2+�(�)= 

3. limx2f(x)=lim�→2�(�)= 

4. limx0f(x)=lim�→0�(�)= 

5. f(0)=�(0)= 

台大WEBWORK 微積分1:11~14組 【2.2: Pr

 

PROBLEM 3

(1 point) Evaluate each expression using the given graph of f(x)�(�).
Enter DNE if the limit or value does not exist.

If you are having a hard time seeing the picture clearly, click on the picture. It will expand to a larger picture on its own page so that you can inspect it more clearly.

 

台大WEBWORK 微積分1:11~14組 【2.2: Pr

 


a) limx3f(x)=lim�→3−�(�)= 

b) limx3+f(x)=lim�→3+�(�)= 

c) limx3f(x)=lim�→3�(�)= 

d) limx3f(x)=lim�→−3−�(�)= 

e) limx3+f(x)=lim�→−3+�(�)= 

f) limx3f(x)=lim�→−3�(�)= 

In problems g-i, assume a is an integer such that 3a3−3≤�≤3.

g) limxaf(x)=lim�→�−�(�)= 

h) limxa+f(x)=lim�→�+�(�)= 

i) limxaf(x)=lim�→��(�)= 

 

台大WEBWORK 微積分1:11~14組 【2.2: Pr

台大WEBWORK 微積分1:11~14組 【2.2: Pr

PROBLEM 4

(1 point) Evaluate the following limits:

 

1.   limx52(x5)3lim�→5−2(�−5)3 =
 
2.   limx52(x5)6lim�→52(�−5)6 =
 
3.   limx01x2(x+7)lim�→01�2(�+7) =
 
4.   limx71x2(x+7)lim�→−7−1�2(�+7) =
 

Use "infinity" for "" and "-infinity" for "−∞".

台大WEBWORK 微積分1:11~14組 【2.2: Pr

PROBLEM 5

(1 point) Find the vertical asymptotes of the function y=xx2x110�=��2−�−110.

x=�=  . Separate multiple answers with commas.

台大WEBWORK 微積分1:11~14組 【2.2: Pr

台大WEBWORK 微積分1:11~14組 【2.2: Pr


arrow
arrow
    全站熱搜
    創作者介紹
    創作者 戰昇 的頭像
    戰昇

    戰昇的部落格

    戰昇 發表在 痞客邦 留言(0) 人氣()