今天是第四週課程內容是關於需求,內容涵蓋效用、效用極大化與預算限制,以及需求函數的推導。
一、效用(Utility)
1. 效用函數的建立
- 在商品空間中構建效用函數,將消費組合指派為一個實數,用於偏好的數值化表示。
- 效用函數需符合偏好的秩序轉換原則:
2. 效用的序數性
- 效用函數僅描述消費者對不同組合的偏好順序,而非對組合滿意度的絕對衡量。
- 任意單調遞增轉換的效用函數均可表示相同偏好關係。
3. 無差異曲線(Indifference Curve)
- 根據效用水準繪製的曲線,表示相同滿意度的消費組合集合。
二、效用極大化與預算限制(Utility Maximization under Budget Constraint)
1. 效用極大化模型
- 消費者以滿足預算限制的情況下,追求效用極大化:
2. 拉格朗日方法與最優條件
- 將問題轉化為拉格朗日方程
- 最優條件需滿足的方程式
3. 主觀與客觀機會成本的平衡
最優組合需滿足的情況
三、需求函數(Demand Function)
1. 需求函數的推導
- 從最優條件與預算限制推導需求函數,例如 Cobb-Douglas
2. 需求函數的特性
- 正常財:需求量隨收入增加而增加。
- 劣等財:需求量隨收入增加而減少。
- 價格效果:需求量隨商品價格增加而減少。
3. 應用:稅制比較
- 比較從價稅與整筆稅對消費者效用的影響,得出整筆稅較優的結論。
Today’s Week 4 lecture focused on Demand, covering topics such as utility, utility maximization under budget constraints, and the derivation of demand functions.
A. Utility
1. Construction of the Utility Function
- A utility function is constructed in the commodity space, assigning a real number to each consumption bundle to represent preferences numerically.
- The utility function must adhere to the principle of preference order transformation:
2. Ordinal Nature of Utility
- A utility function only describes the ranking of preferences among bundles, not the absolute level of satisfaction.
- Any monotonic transformation of a utility function can represent the same preference relations.
3. indifference Curve
- Indifference curves are drawn based on utility levels, representing sets of consumption bundles with the same satisfaction level.
B. Utility Maximization under Budget Constraints
1. Utility Maximization Model
- Consumers aim to maximize utility subject to budget constraints:
2. Lagrangian Method and Optimality Conditions
- The problem is reformulated into a Lagrangian equation.
- The optimal conditions must satisfy the following equations:
- (Insert equations for optimality conditions here)
3. Balancing Subjective and Objective Opportunity Costs
- The optimal consumption bundle satisfies:
C. Demand Function
1. Derivation of the Demand Function
- The demand function is derived from the optimality conditions and budget constraints, such as in the Cobb-Douglas case.
2. Characteristics of Demand Functions
- Normal Goods: Demand increases with income.
- Inferior Goods: Demand decreases with income.
- Price Effect: Demand decreases as the price of a good increases.
3. Applications: Tax Scheme Comparison
- A comparison between ad valorem taxes and lump-sum taxes demonstrates that lump-sum taxes are more favorable for consumers.
留言列表